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Geostatistical techniques to estimate collapse-related soil parameters
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ABSTRACT: Application of the theory and concepts of geostatistics to geotechnical
problems is usually difficult because of inadequate sample size. A successful \
application is demonstrated here in which approximately 1,000 sample values for
collapse-related soil parameters obtained from reliable sources were used.
Geostatistical methods were applied to seven sets of data obtained from over 400
locations within the Tucson Basin in Arizona. The variables were found to have an
isotropic spatial structure which could be fitted by a spherical model. Kriging, which
is a local averaging method of spatial prediction, was applied to estimate values for
the collapse-related soil parameters in unsampled locations. Kriging is an optimal
method which provides estimates for unsampled locations without bias and with known
minimum variance. | Results are presented in the form of contour plots of values for two
parameters; contour plots of the associated variance are also presented.

1 INTRODUCTION confidence interval is calculated on the
basis of a frequency distribution of the

The use of probabilistic models and observations (Vieira et.al., 1981).
statistical techniques in various Regardless of the sampling plan, these
methods provide an incomplete description
of the variability of the property since
there is no link between the calculated
variances and the distance between
observations. In other words, a
knowledge of the frequency distribution

disciplines of geotechnical engineering
has increased rapidly in the recent past.
These techniques are not limited to data
analysis alone but include reliability
assessment of earth structures and other
constructed facilities, risk assessment :
for regulatory control, economic of the observations alone does not
optimization and project feasibility provide any information about the
determination (Beacher, 1984). In variability of the observations with
respect to spatial locations. The

performing these tasks, geotechnical = 2R 3
spatial variability of a soil parameter

engineers use theories of statistics and

probability for an assessment of the given.in terms Og the po§i?ion
uncertainty in the prediction of the coordinates provides additional
performance of the structures which have characterization not derived from the

frequency distribution of observations
alone. The statistical treatment known
as "geostatistics'" provides the tools

been designed on the basis of the average
values obtained for design parameters
from a limited number of laboratory

and/or field test results. As a result necessary for an adequate description of

of small satple sizes, the statistical the spatial variability of a parameter as

estimation error ﬁlays an important role well as an unbiased estimation of its

in geotechnical reliability. value at unsampled locations. iny the
In order to examine the variability of coordinates of the sample locations are

a given parameter over an area, classical utilized and no knowledge of the

statistical methods rely upon an analysis theoretical frequency distribution is

of the variance which quantifies the required.

variability without regard to direction. The theory of regionalized varia?les

Generally, the sample size necessary to provides the foundation of the entire

estimate the mean within some specified field of geostatistics (Journel and
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Hui jbergts, 1978). Modelling of
variograms is the first and most
important step in applying the technique
of Kriging, which is the method used here
for obtaining unbiased estimates of
parameters in unsampled locations.
A considerable amount of computation is
necessary to obtain an adequate estimate
of the variogram because of the empirical
and subjective nature of the estimation
process.

Theoretically, the variogram of Z(x) is
defined by Knudsen and Kim (1978) as:

1
where Z(x) is a particular parameter
value at point x and Z(x + h) is the
parameter value at a point located a
distance h from x. The formal definition
of the variogram is given by:

=55 [ 1Ze+n-2@PE o

The expression for 7Y(h) applies to one-,
two-, or three-dimensional space. In
practice, variograms are computed from a
discrete number of points obtained using
an incremental distance. Therefore,
Equation 2 can be written as:

Nx
1) = g3 D (2(0) = Z(m + R

=1

for Ny, pairs of samples, each being
separated by a distance h., It is assumed
that all samples lie on a straight line
along which the computation is being
performed. The basic unit, h, used for
the interval in Equation 3 is known as
the "class size." A tolerance on the
class size is also required so that data
points closer to one class interval than
another can be considered during
computation.

2 MODELING OF VARIOGRAMS

The first step in variogram modeling is
to define the purpose of the evaluation.
This must be done in order to decide
which variables are of interest. In this
study, the purpose as mentioned earlier,
was to determine whether or not selected
collapse-related soil parameters had any
particular structure. The variogram was
utilized to estimate values of the
parameters at unsampled locations and to
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produce a probability contour plot using
the method of Indicator Kriging.

The parameters of interest are listed
in Table 1. The various data sets
containing values of these parameters are
listed in Table 2. Representative
variograms were obtained for each of the
parameters in each of the seven data
sets, but only a few will be presented
here. All of the geostatistical
computations including variogram
estimation and Kriging were performed by
using the computer program BLUEPACK
developed by Centre de Geostatistique,
Fontainebleau, France. Since the

Table 1. Parameters of interest in this
study.
Parameter
Symbol Definition Type*
CP Percent collapse cC
(Jennings and Knight, 1957)
Y4 Dry unit weight CP
n, In situ porosity CP
So In situ degree
of saturation cp
Wwo In situ moisture content cp
e, In situ void ratio cP
PL Plastic limit cp
R Gibbs' parameter cc
(Gibbs, 1961)
A Alfi parameter cc
(Alfi, 1984)
sy

CC = collapse criterion
CP = collapse-related parameter

Table 2. Data sets used in the analysis.

Data Set Range of Number of Data
Number Depths, ft N

1 0.0-1 125

2 1.0-2 286

3 2.0-3 254

4 3.0-4 100

5 4.0-6 104

6 6.0-40 123

7 0.0-40 219*

* Data from other sets also containing
values for three additional parameters:
R, A, and PL.
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Figure 1., Semi-variogram and fitted
equations for Cp of Data Set 5.
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Figure 2. Semi-variogram and fitted
equation for Y4 of Data Set 5.

modeling of a variogram is, in part, an
art requiring some subjective judgment,
multiple trials are usually necessary in
order to obtain a satisfactory variogram.
The important parameters for a variogram
are the range of influence, a, and the
sill C, Figures 1 and 2 show the
variograms for C, and Y4 of Data Set 5,
respectively., In several cases a pure
"nugget effect” model was obtained,
indicating a complete lack of geologic
structure. Figure 3 shows such a model
for the parameter e, of Data Set 6.
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Figure 3, Semi-variogram and fitted pure
nugget model for e, of Data Set 6.

3 FITTING A THEORETICAL VARIOGRAM MODEL

The final step in constructing a
variogram is to find the theoretical
model that best describes the
experimental variogram. Choosing a
theoretical model and estimating its
parameters are generally done
subjectively. The choice is often
limited to linear or spherical models,
with a spherical model being the most
common,

Fitting and subsequently using a model

are usually done arbitrarily. This does
not alter the results of the
geostatistical calculations. What is

important is that the chosen theoretical
model Y (h) should be a good fit to the
experimental semi-variogram within the
model's limits of reliability (Journel
and Huijbregts, 1978). The choice of a
theoretical model is generally made by
examining the experimental variogram and
taking into account the fact that
variograms are subject to significant
fluctuations at large distances.

It must be realized that the true
variograms of a soil deposit can never be
known, but it is expected that the
experimental variograms will reflect the
underlying theoretical variogram. Since
most of the experimental variograms could
be approximated by a spherical model,
such a model was fitted to all the
computed variograms in this study.
Theoretically, the selected model can be
fitted using a least-squares method, but
this does not ensure an optimal
selection. According to David (1977), a
visual fit by hand is usually sufficient.
If least-squares fitting is used,
weightings must be used.
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The key parameters of the selected
spherical model, after cross-validation
with different trial models, are
presented in Table 3 for all data sets.
The nugget value C, which is the estimate
of Y at h = 0, provides an indication of
short distance variation. The greater
the value of C,, the greater is the
variance of the data set. For example,
the value of C, for the parameter C
varies from 11.0 to 100.0 indicating
higher variability at depth 4.0-6.0 than
at depth 6.0-40.0. Some of the models
(such as that for e, in Data Set 1) show
a "pure nugget' effect indicating lack of
spatial correlation.

Table 3. Parameters of spherical models
fitted to each data set.

Data | Parameter | Nugget | Range | Sill | Mean Error
Set z Co e c [ (2°-2)
C, 30.0 20.0 45.0 0.0045
4 100.0 20.0 110.0 =0.0049
no 380 25.0 45.0 -0.0061
1 (1} 185.0 12.5 120.0 =0.0187
wo 0.0015 | 20.0 | 0.0018 0.0003
eo 0.073 - - -
(7P 185 | - = =
14 80.0 35.0 100.0 0.0057
2 no 324 35.0 45.0 0.0128
' 102.0 30.0 148.0 0.087¢
wo 0.002 25.0 | 0.0028 0.0002
€0 0.042 30.0 0.053 0.0000
Cy 13.0 28.0 16.0 =0.0039
o 850 | 45.0 | 1400 [ 0.0356
no 40.0 35.0 87.5 0.0246
3 & 155.0 —_ — —_
wo 0.0021 | 40.0 | 0.0029 0.0011
€0 0.047 30,0 0.065 0.0008
C, 14.0 20.0 17.0 0.0358
A 85.0 | 27.0 | 1200 | -0.0703
4 no 40.0 27.5 65.0 0.0015
Ty 140.0 12.0 170.0 0.08906
wo 0.008 —_ — -
o 0.09 17.0 0.12 0.0070
C; 1000 | 20.0 | 175.0 | 0.0857
L7 70.0 25.0 105.0 =0.3190
no 35.0 30.0 80.0 0.1760
] 8 130.0 20.0 162.0 0.0203
wo 0.0016 | 25.0 | 0.0028 0.0002
€0 0.04 25.0 0.08 0.0061
Cy 1.0 30.0 16.8 0.0970
L7 150.0 —_ - -
(] no 75.0 -— = =
L) 180.0 | 20.0 | 350.0 =0.1433
wo 0.05 25.0 0.08 =0.0015
€0 0.11 = 7 -
Cs 230 | 200 | 370 | 01363
T 110.0 — -— -
ne - 450 - - -
o0 140.0 | $5.0 | 200.0 0.0258
7 wy 0.005 — -— -—
€ 0.07 -_ -— —
PL 218 25.0 §2.0 0.0007
R 0.11 12.0 0.16 =0.0037
A 21.0 20.0 35.0 =0.0041
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The range, a , of the variogram can be
interpreted as the diameter of the zone
of influence which represents the average
maximum distance over which a soil
property is spatially related. At
distances less than the range, measured
properties of two samples are more alike
with decreasing distance between them.
Thus the range provides an estimate of
areas of similarity. The zone of
influence for each soil property varies
approximately 20 to 30 cm on the map used
in this study. This corresponds to an
actual distance of 5.5 to 8.0 miles.
This distance is large relative to the
distances over which soils are usually
sampled for laboratory tests for a
particular project. On average, this
distance also represents the minimum
distance at which maximum variation
occurs.

The above discussion suggests that
geostatistical concepts can be applied
successfully to the study of collapse-
related soil parameters. The spherical
model was found to be appropriate for
most of the parameters. The following
section describes how the model
parameters can be used for linear
estimation of a given property at an
unsampled location.

4 ORDINARY KRIGING

Spatial dependence between neighboring
observations is expressed by the semi-
variogram function:

2(h) = 3E(2(2) - 2=+ WP}

and estimated by the function:

Na
7' (k) = 2—;—“2[2(:+h) - Z(2)]? (5)

These functions were investigated for all
parameters. The experimental variogram
of most of the parameters was fitted by a
spherical model with range a, sill C,
and a nugget value C,. Measurements
separated by distances smaller than the
range were considered spatially
correlated. For some parameters the
variogram showed complete discontinuity
at the origin resulting in a pure nugget
effect which indicated a total lack of
any geologic structure over the spacing
interval measured. For these parameters
Kriging techniques are not more



advantageous than other available
estimation techniques. Additional data
points at closer spacing may have
provided some adequate structures. For
parameters exhibiting a spatial structure
at the available sampling spacing,
Kriging was used to estimate values at
any desired point within the region using
the initial set of observations.

The system of equations for Ordinary
Kriging can be written in terms of the
variogram function Y(h) according to
Burgess and Webster (1980) as:

Z Aiv(zi— z5) +im = ¥(zo — 25) (6a)

=1

En:k,'=1 (6b)

=1

This system of equations consists of

(n + 1) linear equations and (n + 1)
unknowns with n weights, X, and the
Lagrange parameter, lp. This system of
equations can be written in matrix
notation as:

AX=B (1)

where

(z1,21) (z2,21) ..o (zZan71)
¥(z1,73) q(z2,23) ... v(zn.z2)
A= g : 8 :

'1(::'.1..) 1(1:',&.) 7(2.:.zn)
1 1 1

-

(7a)

O bt oo

7(311:0)
4(z3,20)
B= .

1(zn, Zo)
1

(7b)

and A
Az
(7¢)

Im
The solution of the system of equations
AX = B is of the form:
X = a1l

The estimation at an unknown location is

%= ¥ 2 @
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n
ok =lm+ZA;'1(z1,zo) (9)

=1

A numerical example is presented here to
show how Z, and Oy are obtained (Myers,
1985). The value of the parameter Z is
required at the point indicated by the
question mark in Figure 4. The problem
is then to estimate Z, for a lag of 20
with a linear model given by:

h
Y(h) = 7.8 |0.4 + 0.6 —
400

for h < 400
and

Y(h) = 0 for h 2400
From the lag distance and the given

model, the elements of matrix A can be
calculated as follows:

Y(xp,x3) = 7.8(0.4) = 3.12 = Y(x2,x3)
40

Y(xl,xz) = 7.8 |0.4 + 0.6 —
400

= 7.8(0.46)

= 3,588 = vy(xp,x1)

20
Y(x1,%0) = 7.8 | 0.4 + 0.6 —
400
= 7.8(0.43)
= 3.35 = Y(xp,xp)
Then
AX = B
3.120 3.588 1.000 A 3.354
3.588 3.120 1.000 X; =13.354
1.000 1.000 0.000 1n 1.000

.

20 20

l !
| |
[ () [ ]
2, 2o Z3
b
Figure 4. Geometry of a hypothetical

problem to estimate unknown value by
Kriging.



The solution to these equations can be
obtained by inspection as

ll = 0.5

X2 = 0.5

Therefore from Equation 8
= ZkiAi = 0.52) + 0.52,
and from Equation 9
s ot B
= 0.0 + 0.5 x 3.354 + 0.5 x 3.354

&

Zo

3.354

Thus the estimation at the required point
is obtained as Z, with known estimation
variance equal to 3,354, Therefore, the
estimated value can be applied to
practical problems with known confidence.

When the number of available
measurements n is not too large,
matrix | A  is the same regardless of
the position of the point, xj, to be
estimated. However, the matrix B
changes for every location. Therefore,
only one inversion of matrix A is
necessary to obtain weights Ai and 1, in
order to estimate any number of values
within the area.

In cases where the number of available
measurements is large, and the distance
beyond which the variogram is not known
is less than one-half the largest
distance of the sampled area, an
estimation neighborhood must be selected.
The radius of the neighborhood is varied
until enough sampled points are included
to provide an acceptable variogram,

One advantage of Kriging over other
interpolation methods is that the
estimation variance can be calculated
before the actual sampling is made. The
estimation variance depends on the semi-
variogram and the configuration of the
data points in relation to xg. It does
not depend on the observed value Z
(Burgess and Webster, 1980). Therefore,
if the variogram is known for a given
parameter at a particular location,
sampling intervals for the desired
variance of estimation can be selected
before actual samples are taken at the
site.
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5 PRESENTATION OF RESULTS

The mechanism by which an interpolated
surface is displayed is essentially a
Sseparate problem from that of the
interpolation itself, especially if the
display is to be produced on an automatic
plotter. In most automatic contouring
systems a fine grid of values is
generated to represent the surface,
usually by methods that are not optimal,
For example, in the program SURFACE II
(Sampson, 1975) contour lines are
developed by linear interpolation between
grid nodes. The points where a contour
line of specified value crosses the edge
of a grid cell are located in this way,
The string of successive X and Y
coordinates of these intersections define
the contour line to be drawn, Figure 5
shows contour plots of Yg for Data Set 2
as obtained from program SURFACE II.
Areas where no data points are available
are easily detected by discontinuities in
the contour line,

Figure 5. Contour plots of available
values for Y4 (pcf) of Data Set 2,

Results of ordinary Kriging with known
variance of estimation have been obtained
by the use of the program BLUEPACK. The
contour plots were 8enerated from 1,763
points estimated by Kriging on an
arbitrarily chosen 8rid size that was
found to produce satisfactory contour



plots for the scale used. Contour plots
are largely dependent on the size of the
contour interval which is also dependent
on the actual scaled dimension of the
ordinates, Figures 6 and 7 show the
contour plots of the estimated values and
associated Kriging variance respectively
of the parameter Y4 of Data Set 2. If
the critical values of Y4 are known,
areas containing high, medium or low
collapse-susceptible soils can be
obtained from these contour plots with
known confidence.

6 SUMMARY AND CONCLUSION

Geostatistical techniques were applied to
collapse-related soil parameters
determined by laboratory tests on soils
from Tucson, Arizona. The purpose of the
study was to model associations among the
variables, to investigate the structure
of spatial dependency, and to estimate
the probability that the value of a
certain parameter at a given location is
above or below a critical value that
defines collapse susceptibility, Based
on the results of this investigation, the
following conclusions can be drawn:

1. The principles of geostatistics can
be applied successfully to geotechnical
engineering problems where large amounts
of data are available from a reliable
source.

2. Geostatistics was found to be a
valuable tool for characterizing and

Figure 6. Contour plots of estimated
values for Y4 (pcf) of Data Set 2 by
ordinary Kriging.
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Figure 7. Contour plots of associated
Kriging variance for Y4 (pcf) of Data
Set 2 by ordinary Kriging.

modeling the spatial variability of
geotechnical parameters.

3. Collapse-related soil parameters
can be considered as regionalized
variables having spatial structures that
can best be fitted by a spherical model
variogram. In this study, the range of
influence of the structure varied from
5.5 to 8.0 miles. Since this distance is
large relative to the usual distances
over which soils are sampled, the
application of geostatistical concepts
for estimation of collapse-related soil
parameters at unsampled locations is
justified.

4. The method of Ordinary Kriging
provides a means for estimating soil
properties at an unsampled loction with
known variance of estimation., Therefore,
the method can be applied to estimate any
collapsing soil parameter in Tucson with
a known degree of confidence.

7 REFERENCES

Alfi, A.A.S. 1984. Mechanical and
electron optical properties of a
stabilized collapsible soil in Tucson,
Arizona, Ph.D, Dissertation, University
of Arizona, Tucson, AZ.

Beacher, G.B. 1984. Geostatistics,
reliability, and risk assessment in
geotechnical engineering, Geostatistics
for Natural Resource Characterization,
G. Verly et al (eds.), D. Reidel,
pp. 731-744.



Burgess, T.M, g R. Webster 1980, Optimum
interpolation and

isarithmic mapping of
soil Properties, the variogram and
Punctual Kriging, Journal of Soil
Science, 31:315-331,
David, M. 1977. Geostatistical ore
reserve estimation, Elsevier Science
Publisher, New York.

Gibbs, H.J, 196]. Properties which divide

uncemented soils, U,§,
Bureau of Reclamation, Report No.
EM-608, Denver, co,
Jennings, J1,E, § k, Knight 1957. The
iti ttlement of foundations
due to collapse of Structure of sandy
subsoils on wetting, Proceedings, 4¢h
ICSMFE (London), 1:316-319,

Journel, 4A.J, & C.J. Hui jbregts 1973,
Mining geostatistics, Academic Press,
New York, NY,

Knudsen, H,p, § Y.C. Kim 1978,
course on geostatistical ore
estimation, Department of Min
Geological Engineering,
Arizona, Tucson, Az,

Myers, D.E. 1985, ad
unpublished class
Ma:hematics,
Tucson, Az,

Sampson, P,J, 1975, Series o
analysis, Kansas Geolo

Lawrence, KS.

Vieira, s.R

A short
reserve
ing and
University of

vanced geostatistics,
notes, Department of
University of Arizona,

n spatial
gical Survey,

+» Nielson,
1981, Spatial variabi
measured infiltraion
the Soil Science Soci
45:1040-1048.

D.R. & J.w, Bigger
lity in field
rate, Journal of
ety of America,

296



